Dimension Reduction of Multispectral Data using Canonical Analysis

نویسندگان

  • Rupinder Kaur
  • Smriti Sehgal
چکیده

Remotely Sensed Images are composite images consisting of large number of spectral bands, from electromagnetic spectrum. Analysis and Implementation of such images is much complex processing and takes lot of time. Therefore, dimension of these images must be reduced before any complex operation is performed. Selecting bands, which have higher capability to discriminate between classes, is a process of reducing number of bands with minimum loss of information [1]. In this paper, Canonical Analysis (CA) is used for band selection based on its discriminating power for classification of various classes. CA is based on Fisher’s Linear Discriminant Analysis which maximizes the distance of pixels between classes and simultaneously minimizes the distance between pixels in the same class [5]. It computes eigenvalues and eigenvectors of each band for all the classes. Based on these values, loading factor matrix is computed and the band with highest discriminating power is given highest priority. Band with less priority are not selected leading to reduction of size of the image. Results show that spectral bands 1, 3, 5 are selected using Canonical Analysis whereas bands 4, 3, 2 are selected using Principal Component Analysis from the same LANDSAT image. GENERAL TERMS Multispectral image, Dimension Reduction, Band Selection

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems

In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...

متن کامل

An Application of Wavelet Based Dimension Reduction to AIRS Data

Hyperspectral sensors provide much richer information than comparable multispectral sensors. However currently we do not have sufficient recourses to compute results based on all the gathered information. One way to approach this problem is to perform dimension reduction [1] as pre-processing, i.e to apply a transformation that brings data from a high order dimension to a low order dimension. W...

متن کامل

Wavelet Spectral Analysis for Automatic Reduction of Hyperspectral Imagery

With the number of channels in the hundreds instead of in the tens hyperspectral imagery possesses much richer spectral information than multispectral imagery .The increased dimensionality of such hyperspectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be used without dimension reduction preprocessing. Supervised classific...

متن کامل

Multispectral Image Registration Based on Local Canonical Correlation Analysis

Medical scans are today routinely acquired using multiple sequences or contrast settings, resulting in multispectral data. For the automatic analysis of this data, the evaluation of multispectral similarity is essential. So far, few concepts have been proposed to deal in a principled way with images containing multiple channels. Here, we present a new approach based on a well known statistical ...

متن کامل

Dimension reduction for individual ica to decompose FMRI during real-world experiences: principal component analysis vs. canonical correlation analysis

Group independent component analysis (ICA) with special assumptions is often used for analyzing functional magnetic resonance imaging (fMRI) data. Before ICA, dimension reduction is applied to separate signal and noise subspaces. For analyzing noisy fMRI data of individual participants in free-listening to naturalistic and long music, we applied individual ICA and therefore avoided the assumpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013